Photochemistry of aqueous pyruvic acid.

نویسندگان

  • Elizabeth C Griffith
  • Barry K Carpenter
  • Richard K Shoemaker
  • Veronica Vaida
چکیده

The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid.

The variable composition of secondary organic aerosols (SOA) contributes to the large uncertainty for predicting radiative forcing. A better understanding of the reaction mechanisms leading to aerosol formation such as for the photochemical reaction of aqueous pyruvic acid (PA) at λ ≥ 305 nm can contribute to constrain these uncertainties. Herein, the photochemistry of aqueous PA (5-300 mM) con...

متن کامل

Raman Study of the Photochemistry of Maleic Acid Adsorbed on the Surface of Colloidal Silver

The surface-enhanced Raman scattering (SERS) spectra of maleic (cis; 2-butaneoic acid) and fumaric (trans; 2-butaneoic acid) acids adsorbed on aqueous silver sol particles are reported. These two acids form two groups of isomers which differ only in the relative positions of the two carboxylate groups. The photochemistry of maleic and fumaric acids adsorbed on the surface of silver colloids...

متن کامل

Determination of pyruvic acid concentration using a bioluminescence system from Photobacterium leiognathi.

A novel, highly sensitive and selective bacterial luminescence method for the detection of pyruvic acid (PA) is reported here. This method is based on a reaction system catalyzed by lactate dehydrogenase (LDH) with the bacterial luciferase-FMN:NADH oxidoreductase bioluminescence system in vitro. The reduced nicotinamide adenine dinucleotide (NADH) involved in the LDH reaction system could be qu...

متن کامل

Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds

[1] Aqueous-phase oxidation (in clouds and aerosols) is a potentially important source of organic aerosol and could explain the atmospheric presence of oxalic acid. Methylglyoxal, a water-soluble product of isoprene, oxidizes further in the aqueous phase to pyruvic acid. Discrepancies in the literature regarding the aqueous-phase oxidation of pyruvic acid create large uncertainties in the inclo...

متن کامل

Change of the tautomeric preference for radical cation of pyruvic acid. DFT studies in the gas phase

Keto-enol tautomerism was investigated for ionized pyruvic acid using the DFT(B3LYP) method and the larger basis sets [6-31++G(d,p), 6-311++G(3df, 3pd) and aug-cc-pVDZ]. Change of the tautomeric preference was observed when going from the neutral to ionized tautomeric mixture. Ionization favors the enolization process (ketoenol) of pyruvic acid, whereas the ketonization (ketoenol) is preferred ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 29  شماره 

صفحات  -

تاریخ انتشار 2013